شروع کمپین ویژه امتحانات پایان ترم

| تا 40% تخفیف استثنایی

آموزش مدار الکتریکی 1؛ مدارات سینوسی با مهندس زوارقی؛ جلسه 1

آموزش مدار الکتریکی 1؛ مدارات سینوسی با مهندس زوارقی؛ جلسه 1

خواندن این مطلب

2 دقیقه

زمان میبرد!

آموزش مدار الکتریکی 1؛ مدارات سینوسی با مهندس زوارقی؛ جلسه 1

باعرض سلام و وقت بخیری دوباره! به فصل چهارم (تجزیه و تحلیل مدارات دائمی سینوسی) خیلی خیلی خوش اومدید. با من همراه باشید تا این فصل رو هم با قدرت شروع کنیم.

قبل از شروع یک توضیح کوتاه در مورد اهمیت این فصل بدم که مطالب این فصل وزن سنگینی در امتحانات پایان ترم دارد. پس اهتمام ویژه ای روی مطالب این فصل داشته باشید تا از نتایج عملکردتون در آخر ترم هم راضی باشید. نکته بعدی اینکه پیش نیاز این فصل مختصات قطبی است که باید با اونها آشنا باشید. اگر با ین موضوع آشنایی دارید این جلسه رو رد کنید اگر نه همراه من باشید. بریم برای شروع.

اطلاعاتی درباره مختصات قطبی:

فرم کلی اعداد مختلط به فرم z = a + jb است که اگر به صورت مختصات قطبی در نظر بگیریم، داریم:

z = r∠𝝓 = rejb

که در آن:

a = r cos 𝝓   ,      b = r sin 𝝓      ,      r = √ a2 + b2       ,      𝝓 = tan-1 b/a

به طور مثال داریم:

 فرم مزدوج عدد مختلط z = a + jb به فرم z = a – jb = r ∠ -𝝓 است.

جمع و تفرق اعداد مختلط:

z1 ± z2 = (a1 ± a2) + j(b1 ± b2)      ,        Z1 × Z2 = (r1 × r2) ∠ 𝝓1 + 𝝓     ,          Z1 ÷ Z2 = (r1 ÷ r2) ∠ 𝝓1 + 𝝓2

توان در اعداد مختلط:

zn = rn ∠n 𝝓 = rn (cosn𝝓 + jsinn𝝓)

چند نکته خاص:

ja = a∠90     ,       -ja= a∠ -90      ,      -a = a∠180 ˚    ,      a = a∠0 ˚    ,    1/j= -j   ,      1/j = × j/j = -j

گویاکردن یک عدد مختلط: کافیه در مزدوج مخرج ضرب یا تقسیم کنیم:آموزش مدار الکتریکی 1؛ مدارات سینوسی با مهندس زوارقی؛ جلسه 1

فرم کلی یک سیگنال در مدارات سینوسی به صورت x(t) = Acos(ꙍt + 𝝓)  می باشد که در آن ꙍ همان فرکانس و A دامنه و 𝝓 زاویه سیگنال است و میتوان x(t) را به صورت A∠𝝓  نیز بیان کرد.

خب به همین سادگی جلسه اول ما هم تمام شد. امیدوارم این اطلاعات اولیه براتون مفید بوده باشد. 

توصیه همیشگی ما رو برای استفاده همزمان از منابع شامل جزوه و ویدئوی آموزشی را جدی بگیرید. 

برای دریافت جزوه این فصل میتونید به این آدرس توی وبسایت مراجعه کنید. برای دیدن ویدئوی این فصل هم میتونید به کانال یوتیوب ما در این لینک مراجعه کنید.

فراموش نکنید که منتظر دریافت و شنیدن نظرات سازنده شما هستیم.

تا جلسه بعدی 

موفق باشید🍀

درباره نویسنــده
نویسنده
نرگس دارابی
نظرات کاربـــران
فاقد دیدگاه
دیدگاهی برای این مطلب ثبت نشده است. اولین دیدگاه را شما بنویسید.
ثبت دیدگاه