حل معادلات عددی به روش نیوتن در محاسبات عددی؛ جلسه 6
- محاسبات عددی و جبر خطی
- نرگس دارابی
- 3 دقیقه
سلام و عرض ادب خدمت دوستان عزیزم؛ امیدوارم حال دلتون عالی عالی باشد و همچنان همراه ما باشید. امروز و در این جلسه قصد داریم به یک روش دیگر در حل معادلات عدی بپردازیم با عنوان روش نیوتن. با ما همراه باشید با یک مقدمه کوتاه.
روش نیوتن
یا Newton-Raphson یکی از پرکاربردترین روشهای محاسبات عددی برای یافتن ریشههای یک معادله غیرخطی است. ایده اصلی این روش بر پایه تقریب تابع با یک خط مماس در نقطهای دلخواه و یافتن محل برخورد این خط با محور افقی بنا شده است. با تکرار این فرایند میتوان به سرعت به جواب دقیق نزدیک شد، به شرطی که حدس اولیه مناسب باشد و تابع در اطراف ریشه رفتار مناسبی داشته باشد. روش نیوتن به دلیل سرعت همگرایی بالا، بهویژه در مسائل علمی و مهندسی، بسیار محبوب است.
همانگونه که در شکل زیر دیده می شود، α ریشه مورد نظر است.
هر گاه XO تقریبی از ریشه باشد، از نقطه A(XO , f(XO )) واقع بر منحنی Y= f(x) مماس بر منحنی را رسم کنیم. محل تلاقی این مماس، با محور طولها را X1 می نامیم. سپس ازنقطه B(X1, f(X1 )) واقع بر منحنی، مماس را رسم می کنیم و محل تلاقی این مماس جدید را با محور طولها X2 می نامیم. این عمل را آنقدر تکرار می کنیم تا Xn به اندازه کافی به ریشه یعنی α نزدیکتر شوند.
ابتدا با داشتن Xo برای تعیین X1 ، باید معادله خط مماس بر منحنی Y= f(x) را بنویسیم (در نقطه (XO , f(XO )) ) و محل تلاقی آن را با محور xها تعیین کنیم. پس داریم:
حال محل تلاقی این خط را با محور طولها یعنی (X1 , 0 ) را بدست می آوریم:
که اگر f’ (Xo) ≠ 0 باشد، داریم:
و در حالت کلی داریم:
رابطه(*) را روش تکرار نیوتن گویند.
یک مثال رو براتون اینجا میارم تا بیشتر متوجه موضوع شوید:
مثال1) ریشه معادله f(x) = x – cosx = 0 را که در فاصله [ 1 ,0 ] قرار دارد، به روش نیوتن با چهار رقم اعشار بدست آورید. به طوریکه که Xn تقریب ریشه مورد نظر در تکرار n ام است و قرار دهید Xo = 0/5
حل مثال را هم ببینیم:
چونلذا X3 تقریب مورد نظر هست. α ≈ 0/7391
بریم دو تا نکته بگیم و این جلسه رو به پایان برسونیم:
نکته1) در این روش اگر در این مثال تقریبها را ادامه دهیم، ریشه های همان ریشه خواهد بود:
نکته2) تعداد تکرار در این روش کمتر از روشهای قبلی است.
خب این جلسه هم در این حد کافی هست و طولانی تر نکنیم.
برای دیدن مثالهای بیشتر به ادامه جلسات در جزوه از این لینک اقدام کنید. فراموش نکنید همزمان با مطالعه جزوه به محتوای ویدئویی هم در این آدرس و این آدرس از کانال یوتیوب ما مراجعه کنید و کلیه مطالب را با جزئیات و دقیق یادداشت برداری کنید.
باز هم ممنون که تا انتها با ما همراه بودید. برای ادامه این جلسات هم منتظر همراهی شما عزیزان هستیم.
موفق و پرتوان بمانید.